## Year 6 Summer Term

## Week 9

(w/c 22nd June)

## Lesson 1

Area and perimeter
https://vimeo.com/430339457
Lesson 2
Area of triangles
https://vimeo.com/430339609
Lesson 3
Area of parallelograms
https://vimeo.com/430339748
Lesson 4
Volume of cuboids
https://vimeo.com/430339843
Lesson 5
Challenge

## Lesson 1

Area and perimeter
https://vimeo.com/430339457

Answer questions on next few slides.

Area and perimeter

Use the words to complete the sentences.

two-dimensional shape. It can be measured in units such as
$\qquad$
$\qquad$ is the distance $\qquad$ a two-dimensional
shape. It can be measured in units such as $\qquad$ - or

2 Work out the areas and perimeters of the shapes.

b)


Work out the missing values.
a)

area $=32 \mathrm{~cm}^{2}$
perimeter $=$
 cm
b)

perimeter $=40 \mathrm{~cm}$
c)

area $=\square \mathrm{m}^{2}$
perimeter $=36 \mathrm{~m}$

Work out the areas and perimeters of the shapes.



perimeter $=$ $\qquad$ cm

What do you notice?

## Area and perimeter

3 Work out the missing values.
a)

area $=32 \mathrm{~cm}^{2}$
perimeter $=24 \mathrm{~cm}$
Use the words to complete the sentences.

2) Work out the areas and perimeters of the shapes.
a)

b)

perimeter $=20 \mathrm{~cm}$
perimeter $=20 \mathrm{~cm}$
area $=24 \mathrm{~cm}^{2}$
area $=16 \mathrm{~cm}^{2}$

Tommy
If you start with a rectilinear shape, when you increase the area, the perimeter will $\checkmark$ increase.

Who do you agree with? $\qquad$
Draw some examples to support your answer


Two rectilinear shapes, $A$ and $B$, each have an area of 12 squares

- Shape A has the largest perimeter possible
- Shape B has the smallest perimeter possible.

Draw shapes A and B .

## Mr Jones has 50 m of fencing

He wants to make a rectilinear enclosure using all the fencing.
a) Draw an example of a shape he could make. Give units on your diagram.

b) What is the greatest possible area of the enclosure? $\square$
c) What is the smallest possible area of the enclosure? $\square$


Who do you agree with? $\qquad$ Amir $\qquad$
Draw some examples to support your answer.

$\xrightarrow[\overrightarrow{3}]{\longrightarrow}$

CHALLENGE ANSWERS

Mr Jones has 50 m of fencing.
He wants to make a rectilinear enclosure using all the fencing.
a) Draw an example of a shape he could make. Give units on your diagram.

b) What is the greatest possible area of the enclosure? $156 \mathrm{~m}^{2}$
b) What is the greatest possible area of the enclosure? $156 \mathrm{~m}^{2}$
c) What is the smallest possible area of the enclosure? $24 \mathrm{~m}^{2}$

# Lesson 2 <br> Area of triangles <br> https://vimeo.com/430339609 

Answer questions on next few slides.
Calculate the area of the triangle.


$$
\text { area }=
$$

$\qquad$
2) Calculate the area of the triangles.

c)

area $=$ $\square$ $\mathrm{cm}^{2}$

d)


What mistake has Dora made?

(4) Label the base of each triangle $b$.

Label the perpendicular height $h$.


Are the statements always, sometimes or never true?

| The side at the bottom of <br> a triangle is the base. | The perpendicular height is <br> equal to the vertical height. |
| :--- | :--- |

$\square$ area $=$ $\mathrm{cm}^{2}$ $\mathrm{cm}^{2}$ $\square$
Calculate the area of the triangle.


$$
\text { area }=9 \mathrm{~cm}^{2}
$$Calculate the area of the triangles.



What mistake has Dora made?


4 Label the base of each triangle $b$.
Label the perpendicular height $h$


Are the statements always, sometimes or never true?


Somatíno
area $=35 \mathrm{~cm}^{2}$
area $=35 \mathrm{~cm}^{2}$

Calculate the area of the triangles.
a)

area $=$ $\qquad$ $\mathrm{cm}^{2}$
d)

area $=$ $\qquad$ $m^{2}$
b)

e)

area $\square$
c)

f)


area $=$ $\square$ $\mathrm{cm}^{2}$

8 The area of each triangle is $12 \mathrm{~cm}^{2}$. Find the missing lengths.
a)

b)


Show two ways you can work out the area of the triangle.


Compare answers with a partner.


$$
\text { area }=20 \mathrm{~cm}^{2}
$$

b)


$$
\text { area }=15 \mathrm{~cm}^{2}
$$

$$
\text { area }=7.5 \mathrm{~m}^{2}
$$

f)

$$
9 \mathrm{~cm}
$$

$$
\text { area }=35 \mathrm{~mm}^{2}
$$

e)


$$
\text { area }=12 \mathrm{~m}^{2}
$$

d)


CHALLENGE

## ANSWERS

10 cm


$$
\text { area }=50 \mathrm{~cm}^{2}
$$

Find the area of the shaded region.

The area of each triangle is $12 \mathrm{~cm}^{2}$. Find the missing lengths.

$$
x=3 \mathrm{~cm}
$$

a)

b)


$$
y=24 \mathrm{~cm}
$$

9
Show two ways you can work out the area of the triangle.


Compare answers with a partner.

## Lesson 3

Area of parallelograms
https://vimeo.com/430339748

Answer questions on next few slides.
 and cut it out.

## Huan is finding the area of the parallelogram.


a) Create a rectangle by cutting off the right-angled triangle and moving it.
b) Complete the sentences.

$$
\text { The area of the rectangle is } \square \text { squares. }
$$

The area of the parallelogram is $\square$ squares.

Calculate the areas of the parallelograms.
a)

area $=$ $\qquad$ $\mathrm{cm}^{2}$
b)

area $=$ $\qquad$ $\mathrm{cm}^{2}$
a) What mistake has Huan made?
b) What is the correct answer?
area $=$ $\square$ $\mathrm{cm}^{2}$

Esther has labelled the bases and heights for four parallelograms. Three are correct; one is incorrect. Tick the shapes that have been correctly labelled.


$\square$

$\square$

$\square$

Explain to a partner why one is incorrect

On a piece of squared paper, copy this parallelogram and cut it out.

$10 \times 8=80 \mathrm{~cm}^{2}$
a) What mistake has Huan made?

He haor't uned the perpendicular height
b) What is the correct answer?

$$
\text { area }=60 \mathrm{~cm}^{2}
$$Esther has labelled the bases and heights for four parallelograms. Three are correct; one is incorrect. Tick the shapes that have been correctly labelled.


$\square$

$\square$

$\square$


Explain to a partner why one is incorrect.

Calculate the areas of the parallelograms.


$$
\text { area }=\square \mathrm{m}^{2}
$$

e)


CHALLENGE QUESTIONS

d)


$\square$ $\mathrm{cm}^{2}$

## Find the missing lengths.

a)

area $=15 \mathrm{~cm}^{2}$
b)

area $=12 \mathrm{~m}^{2}$
(7) Here is a rhombus inside a rectangle.

a) Calculate the area of the rhombus.
b)


Explain to a partner why Mo is wrong.

Calculate the areas of the parallelograms.

area $=20 \mathrm{~cm}^{2}$
b)

area $=10 \mathrm{~cm}^{2}$
area $=90 \mathrm{~mm}^{2}$



$$
\text { area }=30 \mathrm{~m}^{2}
$$

e)


CHALLENGE

## ANSWERS

f)

area $=40 \mathrm{~cm}^{2}$
(6)

Find the missing lengths.
a)

area $=15 \mathrm{~cm}^{2}$
b)

area $=12 \mathrm{~m}^{2}$

Here is a rhombus inside a rectangle.


6 cm
a) Calculate the area of the rhombus.
b)

$$
\text { area }=24 \mathrm{c}
$$

$\mathrm{cm}^{2}$


Explain to a partner why Mo is wrong.

## Lesson 4



Volume of cuboids
https://vimeo.com/430339843

Answer questions on next few slides

## Volume of a cuboid

Here is a cuboid made up of cubes.

a) What is the volume of the cuboid?

b) Explain your method for finding the volume.
c) What is the volume of this cuboid?

d) What is the same and what is different about the cuboids?

White
Rose
Maths Maths 0

Find the volume of the cuboids.
You can make them with cubes if it helps.
a)

volume $=$ $\square$
b)


Calculate the volumes of the cuboids.

volume $=$
 e Whito Rose Moths 2019


Here is a cuboid made up of cubes.

a) What is the volume of the cuboid?

$$
\text { volume }=36 \mathrm{~cm}^{3}
$$

b) Explain your method for finding the volume.
c) What is the volume of this cuboid?


$$
\text { volume }=36 \mathrm{~cm}^{3}
$$

d) What is the same and what is different about the cuboids?

Find the volume of the cuboids.
You can make them with cubes if it helps.
a)

b)

(3) Calculate the volumes of the cuboids.
8 cm
volume $=192 \mathrm{~cm}^{3}$

volume $=$


Calculate the volumes of the cubes.
a) b)

volume $=$ $\qquad$ $\mathrm{cm}^{3}$
b)

volume $=$ $\qquad$
(5)

The volume of the cuboid is $60 \mathrm{~m}^{3}$ Find the missing length.

b) Draw two different cuboids that have a volume of $24 \mathrm{~cm}^{3}$


Calculate the total volume of the shape.

volume $=$


Was there another method you could have used?
(4)

Calculate the volumes of the cubes.
a)

volume $=$

b)

volume $=343 \mathrm{~mm}^{3}$The volume of the cuboid is $60 \mathrm{~m}^{3}$ Find the missing length.

6
Calculate the volume of the cuboid.



Calculate the total volume of the shape.

CHALLENGE ANSWERS

b) Draw two different cuboids that have a volume of $24 \mathrm{~cm}^{3}$


$$
\text { volume }=56 \mathrm{~cm}
$$

Was there another method you could have used?
a) Calculate the volumes of the two cuboids.


## Lesson 5



Challenge
Attempt the following problems.
Remember to use RUCSAC


## Challenge 1

Here is a toy car and bus.


How much longer is the bus than the car?

## Challenge 2

Here are 3 beanbags.



They are placed on a seesaw.


Which beanbag is the heaviest?

## Challenge 3

Amir is dividing a 2-digit number by 3 .
His answer is a whole number.


What could the missing digit be?

## Challenge 4

Lewis makes a repeating pattern with some shapes.


Lewis repeats the pattern.
What is the shape in the $\mathbf{5 0}^{\text {th }}$ position?

## Challenge 5

A large rectangle is made up of smaller rectangles, labelled A and B.

60 cm


The length of $A$ is double the width of $A$.
Find the area of one of the rectangles labelled B.

## Challenge 6

Mina buys 3 pizzas and a bottle of cola.


A pizza costs $£ 3.20$ more than a bottle of cola.
The total cost of the items is $£ 19.40$
How much does a pizza cost?

## Challenge 7

A barrel is half full with water.
12 litres of water are poured out.
The barrel is now $1 / 5$ full.
How much water does the barrel hold when full?

## Challenge 8

Work out the following without a calculator.

$$
\frac{10+20+40+80+160+320+640}{2+4+8+16+32+64+128}
$$

Explain your method.

## Challenge 9

$A B C$ is a right-angled triangle.
Part of the triangle has been shaded.

What fraction of the triangle is shaded?


## Challenge 10

In a test Freya scores $25 \%$ more marks than Eva.
Eva scores 50\% more marks than Dominic.
In total the three children score 140 marks.
The test is out of 80 .
What percentage does Dominic score in the test?

## Answers

Challenge 1-68p
Challenge 2-50
Challenge 3-34, 42, 50
Challenge 4-6/16=3/8
Challenge 5-890 g

Challenge 6-33
Challenge 7-690 people
Challenge 8-110 g
Challenge 9-14 cm
Challenge 10-300 adults

